Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2027
-
Additive manufacturing enables the fabrication of complex designs while minimizing waste, but faces challenges related to defects and process anomalies. This study presents a novel multimodal Retrieval-Augmented Generation-based framework that automates anomaly detection across various Additive Manufacturing processes leveraging retrieved information from literature, including images and descriptive text, rather than training datasets. This framework integrates text and image retrieval from scientific literature and multimodal generation models to perform zero-shot anomaly identification, classification, and explanation generation in a Laser Powder Bed Fusion setting. The proposed framework is evaluated on four L-PBF manufacturing datasets from Oak Ridge National Laboratory, featuring various printer makes, models, and materials. This evaluation demonstrates the framework's adaptability and generalizability across diverse images without requiring additional training. Comparative analysis using Qwen2-VL-2B and GPT-4o-mini as MLLM within the proposed framework highlights that GPT-4o-mini outperforms Qwen2-VL-2B and proportional random baseline in manufacturing anomalies classification. Additionally, the evaluation of the RAG system confirms that incorporating retrieval mechanisms improves average accuracy by 12% by reducing the risk of hallucination and providing additional information. The proposed framework can be continuously updated by integrating emerging research, allowing seamless adaptation to the evolving landscape of AM technologies. This scalable, automated, and zero-shot-capable framework streamlines AM anomaly analysis, enhancing efficiency and accuracy.more » « lessFree, publicly-accessible full text available December 4, 2026
-
Abstract Industrial environments demand accurate detection of anomalies to maintain product quality and ensure operational safety. Traditional industrial anomaly detection (IAD) methods often lack the flexibility and adaptability needed in dynamic production settings, where new defect types and operational changes continually emerge. Recent advancements in multimodal large language models (MLLMs) have shown promise by combining visual and textual processing capabilities, yet they are often limited by their lack of domain-specific expertise, particularly regarding industry-standard defect tolerances. To overcome limitations, we introduce Echo, a novel multi-expert framework designed to enhance MLLM performance for IAD. Echo integrates four specialized modules: the Reference Extractor retrieves similar normal images to establish contextual baselines; the Knowledge Guide provides critical, industry-specific insights; the Reasoning Expert enables structured, stepwise analysis for complex queries; and the Decision Maker synthesizes information from the preceding modules to deliver precise, context-aware responses. Evaluations on the MMAD benchmark reveal that Echo significantly improves adaptability, precision, and robustness compared to conventional approaches. Our results demonstrate that guided MLLMs, when augmented with expert modules, can effectively bridge the gap between general visual understanding and the specialized requirements of industrial anomaly detection, paving the way for more reliable and interpretable inspection systems.more » « lessFree, publicly-accessible full text available August 17, 2026
-
Abstract Additive manufacturing enables the fabrication of complex designs while minimizing waste, but faces challenges related to defects and process anomalies. This study presents a novel multimodal Retrieval-Augmented Generation-based framework that automates anomaly detection across various Additive Manufacturing processes leveraging retrieved information from literature, including images and descriptive text, rather than training datasets. This framework integrates text and image retrieval from scientific literature and multimodal generation models to perform zero-shot anomaly identification, classification, and explanation generation in a Laser Powder Bed Fusion setting. The proposed framework is evaluated on four L-PBF manufacturing datasets from Oak Ridge National Laboratory, featuring various printer makes, models, and materials. This evaluation demonstrates the frameworkâs adaptability and generalizability across diverse images without requiring additional training. Comparative analysis using Qwen2-VL-2B and GPT-4o-mini as MLLM within the proposed framework highlights that GPT-4o-mini outperforms Qwen2-VL-2B and proportional random baseline in manufacturing anomalies classification. Additionally, the evaluation of the RAG system confirms that incorporating retrieval mechanisms improves average accuracy by 12% by reducing the risk of hallucination and providing additional information. The proposed framework can be continuously updated by integrating emerging research, allowing seamless adaptation to the evolving landscape of AM technologies. This scalable, automated, and zero-shot-capable framework streamlines AM anomaly analysis, enhancing efficiency and accuracy.more » « lessFree, publicly-accessible full text available August 17, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
An official website of the United States government
